Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bull Entomol Res ; : 1-10, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699862

RESUMEN

Trilocha varians is one of the major pests of Ficus spp. Based on 19 bioclimatic variables provided by the Worldclim, our study analysed the suitable distribution areas of T. varians under current and future climate changes (SSP1-2.6, SSP2-4.5, SSP5-8.5) for two periods (the 2050s and 2090s) using the maximum entropy algorithm (MaxEnt) model. Key environmental variables affecting the geographic distribution of T. varians were also identified, and the changes in the area of suitable range under current and future climate changes were compared. The results showed that the key environmental variables affecting the distribution of T. varians were temperature and precipitation, comprising annual mean temperature (bio1), temperature seasonality (standard deviation × 100) (bio4), precipitation of driest month (bio14), and precipitation of driest quarter (bio17). Under the current climatic conditions, the suitable distribution area of T. varians is within the range of 92°13'E-122°08'E, 18°17'N-31°55'N. The current high, medium, and low suitable areas for T. varians predicted by the MaxEnt model are 14.00 × 104, 21.50 × 104, and 71.95 × 104 km2, of which the high suitable areas are mainly distributed in southern Guangdong, southwestern Guangxi, western Taiwan, Hong Kong, and Hainan. Under different future climatic conditions, some of the high, medium, and low suitability zones for T. varians increased and some decreased, but the mass centre did not migrate significantly. The Pearl River Basin is predicted to remain the main distribution area of T. varians.

2.
Ecol Evol ; 14(2): e10858, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38327692

RESUMEN

Graphium sarpedon is a significant foliar pest of Laurel plants in China. In this study, the MaxEnt model was used to investigate the distribution of G. sarpedon and predict its potential distribution areas in China in the future (2050s and 2090s) based on three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5), and key environmental variables affecting its distribution were identified. The results showed that under the current climatic conditions, the suitable distribution areas of G. sarpedon were 92.17°-134.96° E and 18.04°-33.61° N, including Yangtze Plain (Middle and Lower), Pearl River Delta, Yangtze River Delta, and Lingnan areas. Under the future climate conditions, the total suitable distribution area of G. sarpedon decreased, but the area of medium suitable area increased. The study identified 11 key environmental variables affecting the distribution of G. sarpedon, the most critical of which was Precipitation of Warmest Quarter (bio18) and precipitation in April, May, June, and September (prec4, prec5, prec6, and prec9). This study is beneficial for monitoring and preventing the possible changes of G. sarpedon and provides theoretical references for its prevention and control.

3.
Front Cardiovasc Med ; 10: 1211674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456819

RESUMEN

Paroxysmal atrial fibrillation originates most commonly in the pulmonary veins. However, the superior vena cava has proved to be arrhythmogenic in some cases. Pulsed field ablation, an emerging ablation technology, selectively affects myocardial tissue. Herein, we present a case of paroxysmal atrial fibrillation in a 64-year-old man who was admitted to our hospital for pulsed field ablation. The tachycardia was recurrent despite four successful pulmonary vein isolations. The superior vena cava was determined to be involved in arrhythmogenesis. The atrial fibrillation terminated immediately after the pulsed field ablation discharge at the superior vena cava.

4.
Zookeys ; 1168: 387-402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448482

RESUMEN

Mitochondrial genome analysis is an important tool for studying insect phylogenetics. The longhorn beetle, Batocerahorsfieldi, is a significant pest in timber, economic and protection forests. This study determined the mitochondrial genome of B.horsfieldi and compared it with the mitochondrial genomes of other Cerambycidae with the aim of exploring the phylogenetic status of the pest and the evolutionary relationships among some Cerambycidae subgroups. The complete mitochondrial genome of B.horsfieldi was sequenced by the Illumina HiSeq platform. The mitochondrial genome was aligned and compared with the existing mitochondrial genomes of Batoceralineolata and B.rubus in GenBank (MF521888, MW629558, OM161963, respectively). The secondary structure of transfer RNA (tRNA) was predicted using tRNAScan-SE server v.1.21 and MITOS WebSever. Thirteen protein-coding genes (PCGs) and two ribosomal RNA gene sequences of 21 longhorn beetles, including B.horsfieldi, plus two outgroups, Dryopsernesti (Dryopidae) and Heterocerusparallelus (Heteroceridae), were analyzed. The phylogenetic tree was constructed using maximum likelihood and Bayesian inference methods. In this study, we successfully obtained the complete mitochondrial genome of B.horsfieldi for the first time, which is 15 425 bp in length. It contains 37 genes and an A + T-rich region, arranged in the same order as the recognized ancestor of longhorn beetles. The genome of B.horsfieldi is composed of 33.12% A bases, 41.64% T bases, 12.08% C bases, and 13.16% G bases. The structure, nucleotide composition, and codon usage of the new mitochondrial genome are not significantly different from other longhorn mitochondrial genomes. Phylogenetic analyses revealed that Cerambycidae formed a highly supported single clade, and Vesperidae was either clustered with Cerambycidae or formed a separate clade. Interestingly, B.horsfieldi, B.rubus and B.lineolata were clustered with Monochamus and Anoplophora species in both analyses, with high node support. Additionally, the VesperidaeSpiniphilusspinicornis and Vesperussanzi and the 19 Cerambycidae species formed a sister clade in the Bayesian analysis. Our results have produced new complete mitogenomic data, which will provide information for future phylogenetic and taxonomic research, and provide a foundation for future relevant research.

5.
Insects ; 14(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37233086

RESUMEN

Climate change has a highly significant impact on the distribution of species. As the greenhouse effect intensifies each year, the distribution of organisms responds to this challenge in diverse ways. Therefore, climatic environmental variables are a key entry point for capturing the current and future distribution trends of pests. Frankliniella occidentalis is an invasive pest attested worldwide. Its damage is mainly divided into two aspects, including mechanical damage caused by its feeding and egg laying and the spread of tomato spotted wilt virus (TSWV). TSWV is the most dominant transmitted virulent disease. Moreover, F. occidentalis is the major vector for the transmission of this virus, which poses a grave threat to the yield and survival of our crops. In this study, the distribution pattern of this pest was explored using 19 bioclimatic variables based on the Maxent model. The results indicated that in the future, high-suitability areas of F. occidentalis will be widely distributed in 19 provinces of China, with Hebei, Henan, Shandong, Tianjin and Yunnan being the most abundant. Among the 19 bioclimatic variables, the five variables of annual mean temperature (Bio 1), temperature seasonality (standard deviation × 100) (Bio 4), min temperature of the coldest month (Bio 6), mean temperature of the driest quarter (Bio 9) and precipitation of the coldest quarter (Bio 19) were selected as the key environmental variables affecting the distribution of F. occidentalis. In summary, temperature and precipitation are vital factors for the study of the species' distribution, and this study aims to provide new perspectives for the control of this pest in China.

6.
Phys Chem Chem Phys ; 25(22): 15422-15432, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37248727

RESUMEN

Element doping is a prominent method for reducing the lattice thermal conductivity and optimizing the thermoelectric performance of materials in the thermoelectric field. However, determination of the thermal conductivity of element-doped systems is a challenging task, especially when the elements are randomly doped. In this work, a first-principles based deep neural network potential (NNP) is developed to investigate the lattice thermal transport properties of Cr-doped Sb2Te3 using molecular dynamics simulations. Compared with pure Sb2Te3, the thermal conductivity of orderly Cr-doped Sb2Te3 with Cr atoms locating at specific atomic layer positions decreases slightly in the in-plane direction, but sharply in the out-of-plane direction. The decrease of the low frequency phonon density of states and the enhancement of phonon scattering near 2.5 THz are the primary reasons for the decrease in the thermal conductivity of Cr-doped Sb2Te3, while the decrease of phonon velocity due to band flattening is the reason for the sharp decrease of thermal conductivity in the out-of-plane direction. Moreover, the thermal conductivities of randomly Cr-doped Sb2Te3 with different Cr concentrations are also investigated using the NNP. It is found that the thermal conductivities in both the in-plane and out-of-plane directions are reduced by 76% and 80%, respectively, for Sb36Cr36Te108. Furthermore, the influence of different Cr dopant arrays on the thermal conductivity of Sb2Te3 is also predicted using the NNP. Our work provides a good example for predicting the thermal conductivity of element-doped systems using the NNP combined with molecular dynamics simulations.

7.
Ecol Evol ; 12(10): e9410, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36225826

RESUMEN

The wasp Scleroderma guani is an important parasitic natural enemy of a variety of stem borers such as longicorn beetles. Studying and clarifying the suitable area of this wasp plays an important role in controlling stem borers. Based on information about the actual distribution of S. guani and on a set of environmental variables, MaxEnt niche model and ArcGIS were exploited to predict the potential distribution of this insect in China. This work simulated the geographical distribution of potential climatic suitability of S. guani in China at present and in different periods in the future. Combining the relative percent contribution score of environmental factors and the Jackknife test, the dominant environmental variables and their appropriate values restricting the potential geographical distribution of S. guani were screened. The results showed that the prediction of the MaxEnt model was highly in line with the actual distribution under current climate conditions, and the simulation accuracy was very high. The distribution of S. guani is mainly affected by bio18 (Precipitation of Warmest Quarter), bio11 (Mean Temperature of Coldest Quarter), bio13 (Precipitation of Wettest Month), and bio3 (Isothermality). The suitable habitat of S. guani in China is mainly distributed in the Northeast China Plain, North China Plain, middle-lower Yangtze Plain, and Sichuan Basin, with total suitable area of 547.05 × 104 km2, accounting for 56.85% of China's territory. Furthermore, under the RCP2.6, RCP4.5, and RCP8.5 climate change scenarios in the 2050s and 2090s, the areas of high, medium, and low suitability showed different degrees of change compared to nowadays, exhibiting expansion trend in the future. This work provides theoretical support for related research on pest control and ecological protection.

8.
BMC Cardiovasc Disord ; 21(1): 507, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34670505

RESUMEN

OBJECTIVES: Atrial remodeling is the main developmental cause of atrial arrhythmias (AA), which may induce atrial fibrillation, atrial flutter, atrial tachycardia, and frequent premature atrial beats in acute myocardial infarction (AMI) patients. Thrombospondin-1 (TSP-1) has been shown to play an important role in inflammatory and fibrotic processes, but its role in atrial arrhythmias is not well described. The purpose of this study was to investigate the role of TSP-1 in AMI patients with atrial arrhythmias. METHODS: A total of 219 patients with AMI who underwent percutaneous coronary intervention and with no previous arrhythmias were included. TSP-1 were analyzed in plasma samples. Patients were classified into 2 groups, namely, with and without AA during the acute phase of MI. Continuous electrocardiographic monitoring was used for AA diagnosis in hospital. RESULTS: Twenty-four patients developed AA. Patients with AA had higher TSP-1 levels (29.01 ± 25.87 µg/mL vs 18.36 ± 10.89 µg/mL, p < 0.001) than those without AA. AA patients also tended to be elderly (65.25 ± 9.98 years vs 57.47 ± 10.78 years, p < 0.001), had higher Hs-CRP (39.74 ± 43.50 mg/L vs 12.22 ± 19.25 mg/L, p < 0.001) and worse heart function. TSP-1 (OR 1.033; 95% CI 1.003-1.065, p = 0.034), Hs-CRP (OR 1.023; 95% CI 1.006-1.041, p = 0.008), age (OR 1.067; 95% CI 1.004-1.135, p = 0.038) and LVDd (OR 1.142; 95% CI 1.018-1.282, p = 0.024) emerged as independent risk factors for AA in AMI patients. CONCLUSION: TSP-1 is a potential novel indicator of atrial arrhythmias during AMI.


Asunto(s)
Fibrilación Atrial/sangre , Aleteo Atrial/sangre , Complejos Atriales Prematuros/sangre , Infarto del Miocardio/sangre , Taquicardia Supraventricular/sangre , Trombospondina 1/sangre , Adulto , Anciano , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Aleteo Atrial/diagnóstico , Aleteo Atrial/etiología , Complejos Atriales Prematuros/diagnóstico , Complejos Atriales Prematuros/etiología , Remodelación Atrial , Biomarcadores/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo , Taquicardia Supraventricular/diagnóstico , Taquicardia Supraventricular/etiología , Regulación hacia Arriba , Adulto Joven
9.
Nanoscale Res Lett ; 8(1): 345, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23919442

RESUMEN

(La,Sr)MnO3 (LSMO) nanolayers with various crystallographic textures were grown on the sapphire substrate with and without In2O3 epitaxial buffering. The LSMO nanolayer with In2O3 epitaxial buffering has a (110) preferred orientation. However, the nanolayer without buffering shows a highly (100)-oriented texture. Detailed microstructure analyses show that the LSMO nanolayer with In2O3 epitaxial buffering has a high degree of nanoscale disordered regions (such as subgrain boundaries and incoherent heterointerfaces) in the film. These structural inhomogeneities caused a low degree of ferromagnetic ordering in LSMO with In2O3 epitaxial buffering, which leads to a lower saturation magnetization value and Curie temperature, and higher coercivity and resistivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...